Degradation of 2,4-dinitrotoluene in aqueous solution by dielectric barrier discharge plasma combined with Fe–RGO–BiVO4 nanocomposite

Author:

Vaziri Yaser,Asgari Ghorban,Ghorbani-Shahna Farshid,Madrakian Tayyebeh,Shokoohi Reza,Seid-Mohammadi Abdolmotaleb

Abstract

Abstract2,4-Dinitrotoluene (2,4-DNT) as a priority and hazardous pollutant, is widely used in industrial and military activities. In this study the synergistic effect of Fe–RGO–BiVO4 nanocomposite in a non-thermal dielectric barrier discharge plasma reactor (NTP-DBD) for degrading 2,4-DNT was evaluated. Preparation of the Fe–RGO–BiVO4 nanocomposite was done by a stepwise chemical method depositing Fe and reduced graphene oxide (RGO) on BiVO4. Field emission scanning electron microscopy (FESEM), X-ray diffraction analysis (XRD), UV–vis diffuse reflectance spectra (DRS), and energy-dispersive X-ray spectroscopy mapping (EDS-mapping) validated the satisfactory synthesis of Fe–RGO–BiVO4. To find the optimal conditions and to determine the interaction of model parameters, a central composite design (RSM-CCD) had been employed. 2,4 DNT can be completely degraded at: initial 2,4-DNT concentration of 40 mg L−1, Fe–RGO–BiVO4 dosage of 0.75 g L−1, applied voltage of 21kV, reaction time of 30 min and pH equal to 7, while the single plasma process reached a degradation efficiency of 67%. The removal efficiency of chemical oxygen demand (COD) and total organic carbon (TOC) were 90.62% and 88.02% at 30 min contact time, respectively. Results also indicated that average oxidation state (AOS) and carbon oxidation state (COS) were enhanced in the catalytic NTP-DBD process, which demonstrate the effectiveness of proposed process for facilitating biodegradability of 2,4-DNT.

Funder

Vice Chancellor for Research and Technology, Hamadan University of Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3