Effects of angle of incidence of stimulus light on photopic electroretinograms of zebrafish larvae

Author:

Matsubara Hisashi,Chujo Shinichiro,Mase Yoko,Muramoto Yukiko,Kato Kumiko,Kondo Mineo

Abstract

AbstractIn electroretinographic (ERG) recordings of zebrafish, the light stimulus is usually delivered by a fiber optic cable. The purpose of this study was to determine whether the angle of incidence of the stimulus light from the fiber optic cable will affect the amplitudes and implicit times of the ERGs of zebrafish larvae. The larvae were positioned on their side with the right eye pointed upward. The light stimuli were delivered by a fiber optic cable from three directions of the larvae: frontal 0° (F0°), dorsal 30°(D30°), and ventral 30°(V30°). Photopic ERGs were recorded from 16 larvae at age 5–6 days post-fertilization. Our results showed that the mean amplitude of the b-wave elicited at D30° and V30° stimulation was significantly smaller than that elicited at F0° stimulation (P = 0.014 and P = 0.019, respectively). In addition, the mean amplitude of the d-wave elicited at D30° and V30° stimulation was significantly smaller than that elicited at F0° stimulation (P < 0.0001 and P = 0.015, respectively). However, the difference between the b-wave amplitudes elicited at D30° and V30° stimuli were not significant (P = 0.98), and the d-wave amplitudes were also not significantly different (P = 0.20). The average b-wave amplitudes elicited at D30° stimulation was 84.6 ± 15.7% and V30° stimulation was 84.8 ± 17.4% relative to that of F0° stimulation. The average d-wave amplitudes elicited by D30° stimulation was 85.5 ± 15.2% and by V30° stimulation was 79.0 ± 11.0% relative to that of F0° stimulation. The differences in the implicit times of the b- and d-wave elicited by the different directions of stimulation were not significant (P = 0.52 and P = 0.14, respectively). We conclude that the amplitude of the photopic ERGs is affected by the angle of the incident light. Thus, it would be better to use ganzfeld stimuli to elicit maximum b- and d-wave amplitudes of the photopic ERGs of zebrafish larvae.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3