Temporal and spatial earthquake clustering revealed through comparison of millennial strain-rates from 36Cl cosmogenic exposure dating and decadal GPS strain-rate

Author:

Iezzi Francesco,Roberts Gerald,Faure Walker Joanna,Papanikolaou Ioannis,Ganas Athanassios,Deligiannakis Georgios,Beck Joakim,Wolfers Soeren,Gheorghiu Delia

Abstract

AbstractTo assess whether continental extension and seismic hazard are spatially-localized on single faults or spread over wide regions containing multiple active faults, we investigated temporal and spatial slip-rate variability over many millennia using in-situ 36Cl cosmogenic exposure dating for active normal faults near Athens, Greece. We study a ~ NNE-SSW transect, sub-parallel to the extensional strain direction, constrained by two permanent GPS stations located at each end of the transect and arranged normal to the fault strikes. We sampled 3 of the 7 seven normal faults that exist between the GPS sites for 36Cl analyses. Results from Bayesian inference of the measured 36Cl data implies that some faults slip relatively-rapidly for a few millennia accompanied by relative quiescence on faults across strike, defining out-of-phase fault activity. Assuming that the decadal strain-rate derived from GPS applies over many millennia, slip on a single fault can accommodate ~ 30–75% of the regional strain-rate for a few millennia. Our results imply that only a fraction of the total number of Holocene active faults slip over timescales of a few millennia, so continental deformation and seismic hazard are localized on specific faults and over a length-scale shorter than the spacing of the present GPS network over this time-scale. Thus, (1) the identification of clustered fault activity is vital for probabilistic seismic hazard assessments, and (2) a combination of dense geodetic observations and palaeoseismology is needed to identify the precise location and width of actively deforming zones over specific time periods.

Funder

Natural Environment Research Council

European Regional Development Fund

HELPOS—Hellenic System for Lithosphere Monitoring

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3