Advantages of CoS2 nano-particles on the corrosion resistance and adhesiveness of epoxy coatings

Author:

Deyab M. A.,Alghamdi Majed M.,El-Zahhar Adel A.,El-Shamy Omnia A. A.

Abstract

AbstractResearchers face significant challenges because of the inadequate corrosion resistance and weak adherence of epoxy (EP) coatings. We deal with these issues here by means of a novel nano-composite coating (EP/nano-CoS2). In order to create a composite coating (EP/nano-CoS2), CoS2 nanoparticles (nano-CoS2) were prepared and incorporated to an epoxy (EP) resin. The synthesized CoS2 was characterized using XRD and FT-IR spectroscopic techniques. The mean particle size was determined using Scherer equation and found to be 19.38 nm. The zeta potential was also determined (− 9.78 mV). Electrochemical impedance spectroscopies (EIS) as well as pull-off assessments were used to quantify the EP/nano-CoS2 coating’s anti-corrosion capabilities and adhesive power. The findings demonstrate that the EIS variables of the EP/nano-CoS2 composite coating are markedly improved when compared to raw EP coating. The corrosion resistance or even adhesion of EP protective layer can be markedly increased by using the synthesized nanoparticles as nano-fillers.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3