Author:
Bhattacharjee Atanu,Vishwakarma Gajendra K.,Tripathy Abhipsa,Rajbongshi Bhrigu Kumar
Abstract
AbstractThe potential contribution of the paper is the use of the propensity score matching method for updating censored observations within the context of multi-state model featuring two competing risks.The competing risks are modelled using cause-specific Cox proportional hazard model.The simulation findings demonstrate that updating censored observations tends to lead to reduced bias and mean squared error for all estimated parameters in the risk of cause-specific Cox model.The results for a chemoradiotherapy real dataset are consistent with the simulation results.
Publisher
Springer Science and Business Media LLC
Reference62 articles.
1. Sankoh, A. J., Li, H. & D’Agostino, R. B. Sr. Composite and multicomponent end points in clinical trials. Stat. Med. 36, 4437–4440 (2017).
2. Clark, T. G., Bradburn, M. J., Love, S. B. & Altman, D. G. Survival analysis part I: Basic concepts and first analyses. Br. J. Cancer 89, 232–238 (2003).
3. Meira-Machado, L., de Uña-Álvarez, J., Cadarso-Suárez, C. & Andersen, P. K. Multi-state models for the analysis of time-to-event data. Stat. Methods Med. Res. 18, 195–222 (2009).
4. Eaton, A., Sun, Y., Neaton, J. & Luo, X. Nonparametric estimation in an illness-death model with component-wise censoring. Biometrics 20, 20 (2021).
5. Allen, A. M. et al. Nonalcoholic fatty liver disease incidence and impact on metabolic burden and death: A 20 year-community study. Hepatology 67, 1726–1736 (2018).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献