Abstract
AbstractWith constant growth of civilization and modernization of cities all across the world since past few centuries smart traffic management of vehicles is one of the most sorted after problem by research community. Smart traffic management basically involves segmentation of vehicles, estimation of traffic density and tracking of vehicles. The vehicle segmentation from videos helps realization of niche applications such as monitoring of speed and estimation of traffic. When occlusions, background with clutters and traffic with density variations, this problem becomes more intractable in nature. Keeping this motivation in this research work, we investigate Faster R-CNN based deep learning method towards segmentation of vehicles. This problem is addressed in four steps viz minimization with adaptive background model, Faster R-CNN based subnet operation, Faster R-CNN initial refinement and result optimization with extended topological active nets. The computational framework uses adaptive background modeling. It also addresses shadow and illumination issues. Higher segmentation accuracy is achieved through topological active net deformable models. The topological and extended topological active nets help to achieve stated deformations. Mesh deformation is achieved with minimization of energy. The segmentation accuracy is improved with modified version of extended topological active net. The experimental results demonstrate superiority of this framework with respect to other methods.
Publisher
Springer Science and Business Media LLC
Reference61 articles.
1. Mahmood, et al. Towards a fully automated car parking system. IET Int. Trans. Syst. 13, 293–302 (2018).
2. Xiaohong, et al. Real time object detection based on YOLOv2 for tiny vehicle objects. Proc. Comp. Sci. 183, 61–72 (2021).
3. Jamiya, et al. Little YOLO-SPP: A delicate real time vehicle detection algorithm. Optik 225, 165818 (2021).
4. Tajar, et al. A lightweight Tiny-YOLOv3 vehicle detection approach. J. Real Time Image Proc. 18, 2389–2401 (2021).
5. Chaudhuri, A. Smart traffic management in varying weather conditions. Tech. Rep., Samsung R & D Inst. New Delhi, India (2018).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献