Computational method of the cardiovascular diseases classification based on a generalized nonlinear canonical decomposition of random sequences

Author:

Atamanyuk IgorORCID,Kondratenko YuriyORCID,Havrysh ValeriiORCID,Volosyuk YuriyORCID

Abstract

AbstractDecision support systems can seriously help medical doctors in the diagnosis of different diseases, especially in complicated cases. This article is devoted to recognizing and diagnosing heart disease based on automatic computer processing of the electrocardiograms (ECG) of patients. In the general case, the change of the ECG parameters can be presented as a random sequence of the signals under processing. Developing new computational methods for such signal processing is an important research problem in creating efficient medical decision support systems. Authors consider the possibility of increasing the diagnostic accuracy of cardiovascular diseases by implementing of the new proposed computational method of information processing. This method is based on the generalized nonlinear canonical decomposition of a random sequence of the change of cardiogram parameters. The use of a nonlinear canonical model makes it possible to significantly simplify the maximum likelihood criterion for classifying diseases. This simplification is provided by the transition from a multi-dimensional distribution density of cardiogram parameters to a product of one-dimensional distribution densities of independent random coefficients of a nonlinear canonical decomposition. The absence of any restrictions on the class of random sequences under study makes it possible to achieve maximum accuracy in diagnosing cardiovascular diseases. Functional diagrams for implementing the proposed method reflecting the features of its application are presented. The quantitative parameters of the core of the computational diagnostic procedure can be determined in advance based on the preliminary statistical data of the ECGs for different heart diseases. That is why the developed method is quite simple in terms of computation (computing complexity, accuracy, computing time, etc.) and can be implemented in medical computer decision systems for monitoring cardiovascular diseases and for their diagnosis in real time. The results of the numerical experiment confirm the high accuracy of the developed method for classifying cardiovascular diseases.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning in FTIR Spectrum for the Identification of Antibiotic Resistance: A Demonstration with Different Species of Microorganisms;Antibiotics;2024-08-30

2. Increasing the Accuracy of Determining RR Intervals of ECG Using Wavelet Transform;2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS);2023-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3