Reliability model of the security subsystem countering to the impact of typed cyber-physical attacks

Author:

Kovtun Viacheslav,Izonin Ivan,Gregus Michal

Abstract

AbstractThe article's main contribution is the description of the process of the security subsystem countering the impact of typed cyber-physical attacks as a model of end states in continuous time. The input parameters of the model are the flow intensities of typed cyber-physical attacks, the flow intensities of possible cyber-immune reactions, and the set of probabilities of neutralization of cyber-physical attacks. The set of admissible states of the info-communication system is described taking into account possible variants of the development of the modeled process. The initial parameters of the model are the probabilities of the studied system in the appropriate states at a particular moment. The dynamics of the info-communication system's life cycle are embodied in the form of a matrix of transient probabilities. The mentioned matrix connects the initial parameters in the form of a system of Chapman's equations. The article presents a computationally efficient concept based on Gershgorin's theorems to solve such a system of equations with given initiating values. Based on the presented scientific results, the article proposes the concept of calculating the time to failure as an indicator of the reliability of the info-communication system operating under the probable impact of typical cyber-physical attacks. The adequacy of the model and concepts presented in the article is proved by comparing a statically representative amount of empirical and simulated data. We emphasize that the main contribution of the research is the description of the process of the security subsystem countering the impact of typed cyber-physical attacks as a model of end states in continuous time. Based on the created model, the concept of computationally efficient solution of Chapman's equation system based on Gershgorin's theorems and calculating time to failure as an indicator of the reliability of the info-communication system operating under the probable impact of typed cyber-physical attacks are formalized. These models and concepts are the highlights of the research.

Funder

National Research Foundation of Ukraine

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3