Cotton soot derived carbon nanoparticles for NiO supported processing temperature tuned ambient perovskite solar cells

Author:

Bhandari Shubhranshu,Roy Anurag,Ali Mir Sahidul,Mallick Tapas Kumar,Sundaram Senthilarasu

Abstract

AbstractThe emergence of perovskite solar cells (PSCs) in a "catfish effect" of other conventional photovoltaic technologies with the massive growth of high-power conversion efficiency (PCE) has given a new direction to the entire solar energy field. Replacing traditional metal-based electrodes with carbon-based materials is one of the front-runners among many other investigations in this field due to its cost-effective processability and high stability. Carbon-based perovskite solar cells (c-PSCs) have shown great potential for the development of large scale photovoltaics. First of its kind, here we introduce a facile and cost-effective large scale carbon nanoparticles (CNPs) synthesis from mustard oil assisted cotton combustion for utilization in the mesoporous carbon-based perovskite solar cell (PSC). Also, we instigate two different directions of utilizing the carbon nanoparticles for a composite high temperature processed electrode (HTCN) and a low temperature processed electrode (LTCN) with detailed performance comparison. NiO/CNP composite thin film was used in high temperature processed electrodes, and for low temperature processed electrodes, separate NiO and CNP layers were deposited. The HTCN devices with the cell structure FTO/c-TiO2/m-TiO2/m-ZrO2/high-temperature NiO-CNP composite paste/infiltrated MAPI (CH3NH3PbI3) achieved a maximum PCE of 13.2%. In addition, high temperature based carbon devices had remarkable stability of ~ 1000 h (ambient condition), retaining almost 90% of their initial efficiency. In contrast, LTCN devices with configuration FTO/c-TiO2/m-TiO2/m-ZrO2/NiO/MAPI/low-temperature CNP had a PCE limit of 14.2%, maintaining ~ 72% of the initial PCE after 1000 h. Nevertheless, we believe this promising approach and the comparative study between the two different techniques would be highly suitable and adequate for the upcoming cutting-edge experimentations of PSC.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3