Author:
Golden John,O’Malley Daniel,Viswanathan Hari
Abstract
AbstractModeling hydrological fracture networks is a hallmark challenge in computational earth sciences. Accurately predicting critical features of fracture systems, e.g. percolation, can require solving large linear systems far beyond current or future high performance capabilities. Quantum computers can theoretically bypass the memory and speed constraints faced by classical approaches, however several technical issues must first be addressed. Chief amongst these difficulties is that such systems are often ill-conditioned, i.e. small changes in the system can produce large changes in the solution, which can slow down the performance of linear solving algorithms. We test several existing quantum techniques to improve the condition number, but find they are insufficient. We then introduce the inverse Laplacian preconditioner, which improves the scaling of the condition number of the system from O(N) to $$O(\sqrt{N})$$
O
(
N
)
and admits a quantum implementation. These results are a critical first step in developing a quantum solver for fracture systems, both advancing the state of hydrological modeling and providing a novel real-world application for quantum linear systems algorithms.
Publisher
Springer Science and Business Media LLC
Reference28 articles.
1. Harrow, A. W., Hassidim, A. & Lloyd, S. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502. https://doi.org/10.1103/PhysRevLett.103.150502 (2009).
2. Bravo-Prieto, C. et al. Variational quantum linear solver: A hybrid algorithm for linear systems. Bull. Am. Phys. Soc. 20, 1–14 (2020).
3. Aaronson, S. Read the fine print. Nat. Phys.https://doi.org/10.1038/nphys3272 (2015).
4. Montanaro, A. & Pallister, S. Quantum algorithms and the finite element method. Phys. Rev. A 93, 553. https://doi.org/10.1103/physreva.93.032324 (2016).
5. Huang, H.-Y., Bharti, K. & Rebentrost, P. Near-Term Quantum Algorithms for Linear Systems of Equations. arXiv:1909.07344 (2019).
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献