Quantum computing and preconditioners for hydrological linear systems

Author:

Golden John,O’Malley Daniel,Viswanathan Hari

Abstract

AbstractModeling hydrological fracture networks is a hallmark challenge in computational earth sciences. Accurately predicting critical features of fracture systems, e.g. percolation, can require solving large linear systems far beyond current or future high performance capabilities. Quantum computers can theoretically bypass the memory and speed constraints faced by classical approaches, however several technical issues must first be addressed. Chief amongst these difficulties is that such systems are often ill-conditioned, i.e. small changes in the system can produce large changes in the solution, which can slow down the performance of linear solving algorithms. We test several existing quantum techniques to improve the condition number, but find they are insufficient. We then introduce the inverse Laplacian preconditioner, which improves the scaling of the condition number of the system from O(N) to $$O(\sqrt{N})$$ O ( N ) and admits a quantum implementation. These results are a critical first step in developing a quantum solver for fracture systems, both advancing the state of hydrological modeling and providing a novel real-world application for quantum linear systems algorithms.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference28 articles.

1. Harrow, A. W., Hassidim, A. & Lloyd, S. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502. https://doi.org/10.1103/PhysRevLett.103.150502 (2009).

2. Bravo-Prieto, C. et al. Variational quantum linear solver: A hybrid algorithm for linear systems. Bull. Am. Phys. Soc. 20, 1–14 (2020).

3. Aaronson, S. Read the fine print. Nat. Phys.https://doi.org/10.1038/nphys3272 (2015).

4. Montanaro, A. & Pallister, S. Quantum algorithms and the finite element method. Phys. Rev. A 93, 553. https://doi.org/10.1103/physreva.93.032324 (2016).

5. Huang, H.-Y., Bharti, K. & Rebentrost, P. Near-Term Quantum Algorithms for Linear Systems of Equations. arXiv:1909.07344 (2019).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3