Compositional modeling of gas-condensate viscosity using ensemble approach

Author:

Rezaei Farzaneh,Akbari Mohammad,Rafiei Yousef,Hemmati-Sarapardeh Abdolhossein

Abstract

AbstractIn gas-condensate reservoirs, liquid dropout occurs by reducing the pressure below the dew point pressure in the area near the wellbore. Estimation of production rate in these reservoirs is important. This goal is possible if the amount of viscosity of the liquids released below the dew point is available. In this study, the most comprehensive database related to the viscosity of gas condensate, including 1370 laboratory data was used. Several intelligent techniques, including Ensemble methods, support vector regression (SVR), K-nearest neighbors (KNN), Radial basis function (RBF), and Multilayer Perceptron (MLP) optimized by Bayesian Regularization and Levenberg–Marquardt were applied for modeling. In models presented in the literature, one of the input parameters for the development of the models is solution gas oil ratio (Rs). Measuring Rs in wellhead requires special equipment and is somewhat difficult. Also, measuring this parameter in the laboratory requires spending time and money. According to the mentioned cases, in this research, unlike the research done in the literature, Rs parameter was not used to develop the models. The input parameters for the development of the models presented in this research were temperature, pressure and condensate composition. The data used includes a wide range of temperature and pressure, and the models presented in this research are the most accurate models to date for predicting the condensate viscosity. Using the mentioned intelligent approaches, precise compositional models were presented to predict the viscosity of gas/condensate at different temperatures and pressures for different gas components. Ensemble method with an average absolute percent relative error (AAPRE) of 4.83% was obtained as the most accurate model. Moreover, the AAPRE values for SVR, KNN, MLP-BR, MLP-LM, and RBF models developed in this study are 4.95%, 5.45%, 6.56%, 7.89%, and 10.9%, respectively. Then, the effect of input parameters on the viscosity of the condensate was determined by the relevancy factor using the results of the Ensemble methods. The most negative and positive effects of parameters on the gas condensate viscosity were related to the reservoir temperature and the mole fraction of C11, respectively. Finally, suspicious laboratory data were determined and reported using the leverage technique.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3