Author:
Jurak Pavel,Bear Laura R.,Nguyên Uyên Châu,Viscor Ivo,Andrla Petr,Plesinger Filip,Halamek Josef,Vondra Vlastimil,Abell Emma,Cluitmans Matthijs J. M.,Dubois Rémi,Curila Karol,Leinveber Pavel,Prinzen Frits W.
Abstract
AbstractThe study introduces and validates a novel high-frequency (100–400 Hz bandwidth, 2 kHz sampling frequency) electrocardiographic imaging (HFECGI) technique that measures intramural ventricular electrical activation. Ex-vivo experiments and clinical measurements were employed. Ex-vivo, two pig hearts were suspended in a human-torso shaped tank using surface tank electrodes, epicardial electrode sock, and plunge electrodes. We compared conventional epicardial electrocardiographic imaging (ECGI) with intramural activation by HFECGI and verified with sock and plunge electrodes. Clinical importance of HFECGI measurements was performed on 14 patients with variable conduction abnormalities. From 3 × 4 needle and 108 sock electrodes, 256 torso or 184 body surface electrodes records, transmural activation times, sock epicardial activation times, ECGI-derived activation times, and high-frequency activation times were computed. The ex-vivo transmural measurements showed that HFECGI measures intramural electrical activation, and ECGI-HFECGI activation times differences indicate endo-to-epi or epi-to-endo conduction direction. HFECGI-derived volumetric dyssynchrony was significantly lower than epicardial ECGI dyssynchrony. HFECGI dyssynchrony was able to distinguish between intraventricular conduction disturbance and bundle branch block patients.
Funder
the CAS project
National Research Agency “Investments of the Future”
Kootstra Talent Fellowship research grant from Maastricht University Medical Center and by a Dutch Heart Foundation grant
Charles University Research Program Q38, Research Centre program
European Regional Development Fund-Project ENOCH
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献