Active site competition is the mechanism for the inhibition of lipoprotein-associated phospholipase A2 by detergent micelles or lipoproteins and for the efficacy reduction of darapladib

Author:

Zhuo Shaoqiu,Yuan Chong

Abstract

AbstractLipoprotein associated phospholipase A2 (Lp-PLA2) has been characterized for its interfacial activation as well as inhibition by detergent micelles and lipoprotein particles. The enzyme has been shown to bind on the surfaces of hydrophobic aggregates, such as detergent micelles, lipoprotein particles and even polystyrene latex nanobeads. Binding to hydrophobic aggregates stimulates the activity of Lp-PLA2 but may not be the necessary step for catalysis. However, at higher concentrations, detergent micelles, latex nanobeads or lipoprotein particles inhibit Lp-PLA2 possibly by blocking the access of substrates to the active site. The competition mechanism also blocks inhibitors such as darapladib binding to Lp-PLA2 and reduces the efficacy of the drug. Darapladib has very low solubility and mainly exists in solutions as complexes with detergents or lipoprotein particles. The inhibition of Lp-PLA2 by darapladib is dependent on many factors such as concentrations of detergents or lipoproteins, incubation time, as well as the order of mixing reaction components. The in vitro Lp-PLA2 activity assays used in clinical studies may not accurately reflect the residual Lp-PLA2 activity in vivo. Darapladib has been found mainly bound on HDL and albumin when it is incubated with human serum. However, Lp-PLA2 is more sensitive to darapladib when bound on LDL and relatively resistant to darapladib when bound on HDL. Therefore, high cholesterol levels may decrease the efficacy of darapladip and cause the drug to be less effective in high risk patients. Our study will help to design better inhibitors for Lp-PLA2. The discoveries also contribute to understanding the mechanism of interfacial activation and inhibition for Lp-PLA2 and provide a new concept for researchers in building better kinetic model for interfacial enzymes.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference34 articles.

1. Satyanarayana, U. Biochemistry, 2nd edn. Books and Allied, Kolkata, India. ISBN: 8187134801. OCLC 71209231 (2002).

2. Feingold K. R., Anawalt B., Boyce A., et al., editors. Introduction to lipids and lipoproteins. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health (2000).

3. Colin, S., Chinetti-Gbaguidi, G. & Staels, B. Macrophage phenotypes in atherosclerosis. Immunol. Rev. 262, 153–166. https://doi.org/10.1111/imr.12218 (2014).

4. Badimon, L. New challenges in the etiopathogenesis of atherothrombosis. Cerebrovasc. Dis. 11(Suppl 1), 80–84 (2001).

5. Dashty, M. et al. Proteome of human plasma very low-density lipoprotein and low-density lipoprotein exhibits a link with coagulation and lipid metabolism. Thromb. Haemost. 111, 518–530. https://doi.org/10.1160/TH13-02-0178 (2014).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3