Author:
Wolfram Uwe,Peña Fernández Marta,McPhee Samuel,Smith Ewan,Beck Rainer J.,Shephard Jonathan D.,Ozel Ali,Erskine Craig S.,Büscher Janina,Titschack Jürgen,Roberts J. Murray,Hennige Sebastian J.
Abstract
AbstractOcean acidification is a threat to deep-sea corals and could lead to dramatic and rapid loss of the reef framework habitat they build. Weakening of structurally critical parts of the coral reef framework can lead to physical habitat collapse on an ecosystem scale, reducing the potential for biodiversity support. The mechanism underpinning crumbling and collapse of corals can be described via a combination of laboratory-scale experiments and mathematical and computational models. We synthesise data from electron back-scatter diffraction, micro-computed tomography, and micromechanical experiments, supplemented by molecular dynamics and continuum micromechanics simulations to predict failure of coral structures under increasing porosity and dissolution. Results reveal remarkable mechanical properties of the building material of cold-water coral skeletons of 462 MPa compressive strength and 45–67 GPa stiffness. This is 10 times stronger than concrete, twice as strong as ultrahigh performance fibre reinforced concrete, or nacre. Contrary to what would be expected, CWCs retain the strength of their skeletal building material despite a loss of its stiffness even when synthesised under future oceanic conditions. As this is on the material length-scale, it is independent of increasing porosity from exposure to corrosive water or bioerosion. Our models then illustrate how small increases in porosity lead to significantly increased risk of crumbling coral habitat. This new understanding, combined with projections of how seawater chemistry will change over the coming decades, will help support future conservation and management efforts of these vulnerable marine ecosystems by identifying which ecosystems are at risk and when they will be at risk, allowing assessment of the impact upon associated biodiversity.
Funder
Engineering and Physical Sciences Research Council
Leverhulme Trust
Natural Environment Research Council
Publisher
Springer Science and Business Media LLC
Reference87 articles.
1. Hennige, S., Roberts, J. M. & Williamson, P. Secretariat of the Convention on Biological Diversity. An updated synthesis of the impacts of ocean acidification on marine biodiversity. 2014.
2. Kline, D. I. et al. Living coral tissue slows skeletal dissolution related to ocean acidification. Nat. Ecol. Evol. 3(10), 1438–1444 (2019).
3. Wisshak, M., Schönberg, C. H. L., Form, A. & Freiwald, A. Ocean acidification accelerates reef bioerosion. PLoS ONE 7(9), e45124–e45124 (2012).
4. Albright, R. et al. Carbon dioxide addition to coral reef waters suppresses net community calcification. Nature 555(7697), 516–516 (2018).
5. Eyre, B. D. et al. Coral reefs will transition to net dissolving before end of century. Science 359(6378), 908–911 (2018).
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献