Nitrogen has a greater influence than phosphorus on the diazotrophic community in two successive crop seasons in Northeast China

Author:

Zhou Jing,Ma Mingchao,Guan Dawei,Jiang Xin,Zhang Nianxin,Shu Fengyue,Kong Yong,Li Jun

Abstract

AbstractFertilizer-induced changes in soil nutrients regulate nitrogen (N) fixation in the terrestrial biosphere, but the influences of N and phosphorus (P) fertilization on the diazotroph communities in successive crop seasons were unclear. In this study, we assessed the effects of N and P (high vs. low doses) on the abundance and structure of N2-fixation communities after wheat and soybean harvest in a long-term (34 and 35 years) fertilization experiment. In both seasons, long-term N addition significantly decreased the abundance of nifH genes and 16S rDNA; in addition, high doses of N and P fertilizer decreased the richness of diazotrophs, whereas low doses did not. The proportion of the dominant genus, Bradyrhizobium, in the soybean season (86.0%) was higher than that in the wheat season (47.9%). Fertilization decreased diazotroph diversity and the relative abundance of Bradyrhizobium in the wheat season, but had insignificant effects in the soybean season. The addition of N, but not P, significantly changed the communities of both diazotrophs (at the genus level) and rhizobia (at the species level) in the two seasons. Soil pH was positively associated with nifH abundance and diazotrophic richness; soil NO3 content was negatively correlated with diazotrophic richness and positively correlated with diversity. Soil pH and NO3 content were the two main drivers shaping the soil diazotrophic community. Overall, long-term inorganic N had a greater influence than P on both diazotrophic abundance and community composition, and diazotrophic diversity was more clearly affected by fertilization in the wheat season than in the soybean season.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3