Temperature-responsive mixed-mode column for the modulation of multiple interactions

Author:

Nagase Kenichi,Matsumoto Kosuke,Kanazawa Hideko

Abstract

AbstractIn this study, mixed-mode chromatography columns have been investigated using multiple analyte interactions. A mixed-mode chromatography column was developed using poly(N-isopropylacrylamide) (PNIPAAm) brush-modified silica beads and poly(3-acrylamidopropyl trimethylammonium chloride) (PAPTAC) brush-modified silica beads. PNIPAAm brush-modified silica beads and PAPTAC brush-modified silica beads were prepared by atom transfer radical polymerization. The beads were then packed into a stainless-steel column in arbitrary compositions. The elution studies evaluated the column performance on hydrophobic, electrostatic, and therapeutic drug samples using steroids, adenosine nucleotide, and antiepileptic drugs as analytes, respectively. Steroids exhibited an increased retention time when the column temperature was increased. The retention of adenosine nucleotides increased with the increasing composition of the PAPTAC-modified beads in the column. The antiepileptic drugs were separated using the prepared mixed-mode columns. An effective separation of antiepileptic drugs was observed on a 10:1 PNIPAAm:PAPTAC column because the balance between the hydrophobic and electrostatic interactions with antiepileptic drugs was optimized for the bead composition. Oligonucleotides were also separated using mixed-mode columns through multiple hydrophobic and electrostatic interactions. These results demonstrate that the developed mixed-mode column can modulate multiple hydrophobic and electrostatic interactions by changing the column temperature and composition of the packed PNIPAAm and PAPTAC beads.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3