Predicting the hyperelastic properties of alginate-gelatin hydrogels and 3D bioprinted mesostructures

Author:

Soufivand Anahita Ahmadi,Budday SilviaORCID

Abstract

AbstractAdditive manufacturing has been widely used in tissue engineering, as 3D bioprinting enables fabricating geometrically complicated replacements for different tissues and organs. It is vital that the replacement mimics the specific properties of native tissue and bears the mechanical loading under its physiological conditions. Computational simulations can help predict and tune the mechanical properties of the printed construct—even before fabrication. In this study, we use the finite element (FE) method to predict the mechanical properties of different hydrogel mesostructures fabricated through various print patterns and validate our results through corresponding experiments. We first quantify the mechanical properties of alginate-gelatin hydrogels used as matrix material through an inverse approach using an FE model and cyclic compression-tension experimental data. Our results show that the fabrication process can significantly affect the material properties so that particular caution needs to be paid when calibrating FE models. We validate our optimized FE model using experimental data and show that it can predict the mechanical properties of different mesostructures, especially under compressive loading. The validated model enables us to tune the mechanical properties of different printed structures before their actual fabrication. The presented methodology can be analogously extended for cell bioprinting applications, other materials, and loading conditions. It can help save time, material, and cost for biofabrication applications in the future.

Funder

Deutsche Forschungsgemeinschaft

Friedrich-Alexander-Universität Erlangen-Nürnberg

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3