A novel role for the chloride intracellular channel protein Clic5 in ciliary function

Author:

Ott Elisabeth,Hoff Sylvia,Indorf Lara,Ditengou Franck Anicet,Müller Julius,Renschler Gina,Lienkamp Soeren S.,Kramer-Zucker Albrecht,Bergmann Carsten,Epting Daniel

Abstract

AbstractCLIC5 belongs to a family of ion channels with six members reported so far. In vertebrates, the CLIC5 gene encodes two different isoforms, CLIC5A and CLIC5B. In addition to its ion channel activity, there is evidence for further functions of CLIC5A, such as the remodeling of the actin cytoskeleton during the formation of a functional glomerulus in the vertebrate kidney. However, its specific role is still incompletely understood and a specific functional role for CLIC5B has not been described yet. Here we report our findings on the differential expression and functions of Clic5a and Clic5b during zebrafish kidney development. Whole-mount in situ hybridization studies revealed specific expression of clic5a in the eye and pronephric glomerulus, and clic5b is expressed in the gut, liver and the pronephric tubules. Clic5 immunostainings revealed that Clic5b is localized in the cilia. Whereas knockdown of Clic5a resulted in leakiness of the glomerular filtration barrier, Clic5b deficient embryos displayed defective ciliogenesis, leading to ciliopathy-associated phenotypes such as ventral body curvature, otolith deposition defects, altered left–right asymmetry and formation of hydrocephalus and pronephric cysts. In addition, Clic5 deficiency resulted in dysregulation of cilia-dependent Wnt signalling pathway components. Mechanistically, we identified a Clic5-dependent activation of the membrane-cytoskeletal linker proteins Ezrin/Radixin/Moesin (ERM) in the pronephric tubules of zebrafish. In conclusion, our in vivo data demonstrates a novel role for Clic5 in regulating essential ciliary functions and identified Clic5 as a positive regulator of ERM phosphorylation.

Funder

Deutsche Forschungsgemeinschaft

Medical Faculty, University of Freiburg

DKTK

Federal Ministry of Education and Research

Universitätsklinikum Freiburg

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3