Stress-induced despair behavior develops independently of the Ahr-RORγt axis in CD4 + cells

Author:

Rivet-Noor Courtney R.,Merchak Andrea R.,Li Sihan,Beiter Rebecca M.,Lee Sangwoo,Thomas Jalon Aaron,Fernández-Castañeda Anthony,Shin Jung-Bum,Gaultier Alban

Abstract

AbstractCurrent treatments for major depressive disorder are limited to neuropharmacological approaches and are ineffective for large numbers of patients. Recently, alternative means have been explored to understand the etiology of depression. Specifically, changes in the microbiome and immune system have been observed in both clinical settings and in mouse models. As such, microbial supplements and probiotics have become a target for potential therapeutics. A current hypothesis for the mechanism of action of these supplements is via the aryl hydrocarbon receptor’s (Ahr) modulation of the T helper 17 cell (Th17) and T regulatory cell axis. As inflammatory RORγt + CD4 + Th17 T cells and their primary cytokine IL-17 have been implicated in the development of stress-induced depression, the connection between stress, the Ahr, Th17s and depression remains critical to understanding mood disorders. Here, we utilize genetic knockouts to examine the role of the microbial sensor Ahr in the development of stressinduced despair behavior. We observe an Ahr-independent increase in gut-associated Th17s in stressed mice, indicating that the Ahr is not responsible for this communication. Further, we utilized a CD4-specific RAR Related Orphan Receptor C (Rorc) knockout line to disrupt the production of Th17s. Mice lacking Rorc-produced IL-17 did not show any differences in behavior before or after stress when compared to controls. Finally, we utilize an unsupervised machine learning system to examine minute differences in behavior that could not be observed by traditional behavioral assays. Our data demonstrate that neither CD4 specific Ahr nor Rorc are necessary for the development of stress-induced anxiety- or depressive-like behaviors. These data suggest that research approaches should focus on other sources or sites of IL-17 production in stress-induced depression.

Funder

National Institute of Mental Health

National Institute of Neurological Disorders and Stroke

National Institute on Deafness and Other Communication Disorders

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3