Effects of polyimide curing on image sticking behaviors of flexible displays

Author:

Kim Hyojung,Park Jongwoo,Bak Sora,Park Jungmin,Byun Changwoo,Oh Changyong,Kim Bo Sung,Han Chanhee,Yoo Jongmin,Kim Dongbhin,Song Jangkun,Choi Pyungho,Choi Byoungdeog

Abstract

AbstractFlexible displays on a polyimide (PI) substrate are widely regarded as a promising next-generation display technology due to their versatility in various applications. Among other bendable materials used as display panel substrates, PI is especially suitable for flexible displays for its high glass transition temperature and low coefficient of thermal expansion. PI cured under various temperatures (260 °C, 360 °C, and 460 °C) was implemented in metal–insulator–metal (MIM) capacitors, amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFT), and actual display panels to analyze device stability and panel product characteristics. Through electrical analysis of the MIM capacitor, it was confirmed that the charging effect in the PI substrates intensified as the PI curing temperature increased. The threshold voltage shift (ΔVth) of the samples was found to increase with rising curing temperature under negative bias temperature stress (NBTS) due to the charging effect. Our analyses also show that increasing ΔVth exacerbates the image sticking phenomenon observed in display panels. These findings ultimately present a direct correlation between the curing temperature of polyimide substrates and the panel image sticking phenomenon, which could provide an insight into the improvement of future PI-substrate-based displays.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3