SPIONs/3D SiSBA-16 based Multifunctional Nanoformulation for target specific cisplatin release in colon and cervical cancer cell lines

Author:

Jermy B. Rabindran,Alomari Munther,Ravinayagam Vijaya,Almofty Sarah Ameen,Akhtar Sultan,Borgio J. Francis,AbdulAzeez Sayed

Abstract

Abstract Multifunctional nanomaterials can be used for dual applications: drug delivery as well as in bioimaging. In current study, we investigated potential use of silica based supports; 3D cage type SiSBA-16 (S-16), monodispersed hydrophilic spherical silica (HYPS) and mesocellular foam (MSU-F) for cisplatin (Cp) delivery. To obtain magnetic resonance characteristics, 10 wt% iron oxide was loaded through enforced adsorption technique. For pH stimuli responsive release of Cp, 10 wt%SPIONs/S-16 was functionalized with 3-(Aminopropyl)triethoxysilane (A) and poly acrylic acid (PAA) termed as 10 wt%SPIONs/S-16-A-Cp and 10 wt%SPIONs/S-16-APAA-Cp. By TEM analysis, the average diameter of the SPIONs was found to range between 10–60 nm. VSM analysis showed saturation magnetization over S-16, HYPS and MSU-F were in the following order: 10 wt%SPIONs/HYPS (4.08 emug−1) > 10 wt%SPIONs /S-16 (2.39 emug−1) > 10 wt%SPIONs/MSU-F (0.23 emug−1). Cp release study using dialysis membrane in PBS solution over 10 wt%SPIONs/S-16 nanoformulations showed highest cumulative release (65%) than 10 wt%SPIONs/MSU-F-A-Cp (63%), 10 wt%SPIONs/HYPS-A-Cp (58%), and Cp-F127/S-16 (53%), respectively. 10 wt%SPIONs/S-16-A-Cp and 10 wt%SPIONs/S-16-APAA-Cp were evaluated for in vitro target anticancer efficiency in human cancer cell lines (colon cancer (HCT 116), cervical cancer (HeLa)) and normal cells (Human embryonic kidney cells (HEK293) using MTT and DAPI staining. 10 wt%SPIONs/S-16-A-Cp treated Hela and HCT116 cancerous cell lines showed significant control of cell growth, apoptotic activity and less cytotoxic effect as compared to Cp and 10 wt%SPIONs/S-16. Target specific Cp release in the cells shows that 10 wt%SPIONs/S-16-A-Cp can be easily upgraded for magnetic resonance imaging capability.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3