Experimental evidence of effective human–AI collaboration in medical decision-making

Author:

Reverberi Carlo,Rigon Tommaso,Solari Aldo,Hassan Cesare,Cherubini Paolo,Antonelli Giulio,Awadie Halim,Bernhofer Sebastian,Carballal Sabela,Dinis-Ribeiro Mário,Fernández-Clotett Agnès,Esparrach Glòria Fernández,Gralnek Ian,Higasa Yuta,Hirabayashi Taku,Hirai Tatsuki,Iwatate Mineo,Kawano Miki,Mader Markus,Maieron Andreas,Mattes Sebastian,Nakai Tastuya,Ordas Ingrid,Ortigão Raquel,Zúñiga Oswaldo Ortiz,Pellisé Maria,Pinto Cláudia,Riedl Florian,Sánchez Ariadna,Steiner Emanuel,Tanaka Yukari,Cherubini Andrea,

Abstract

AbstractArtificial Intelligence (ai) systems are precious support for decision-making, with many applications also in the medical domain. The interaction betweenmds andaienjoys a renewed interest following the increased possibilities of deep learning devices. However, we still have limited evidence-based knowledge of the context, design, and psychological mechanisms that craft an optimal human–aicollaboration. In this multicentric study, 21 endoscopists reviewed 504 videos of lesions prospectively acquired from real colonoscopies. They were asked to provide an optical diagnosis with and without the assistance of anaisupport system. Endoscopists were influenced byai($$\textsc {or}=3.05$$OR=3.05), but not erratically: they followed theaiadvice more when it was correct ($$\textsc {or}=3.48$$OR=3.48) than incorrect ($$\textsc {or}=1.85$$OR=1.85). Endoscopists achieved this outcome through a weighted integration of their and theaiopinions, considering the case-by-case estimations of the two reliabilities. This Bayesian-like rational behavior allowed the human–aihybrid team to outperform both agents taken alone. We discuss the features of the human–aiinteraction that determined this favorable outcome.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3