Author:
Zhang Lingxue,Lu Yanqiao,An Junqing,Wu Yin,Liu Zhixue,Zou Ming-Hui
Abstract
AbstractKetone bodies serve as an energy source, especially in the absence of carbohydrates or in the extended exercise. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a crucial energy sensor that regulates lipid and glucose metabolism. However, whether AMPK regulates ketone metabolism in whole body is unclear even though AMPK regulates ketogenesis in liver. Prolonged resulted in a significant increase in blood and urine levels of ketone bodies in wild-type (WT) mice. Interestingly, fasting AMPKα2–/– and AMPKα1–/– mice exhibited significantly higher levels of ketone bodies in both blood and urine compared to fasting WT mice. BHB tolerance assays revealed that both AMPKα2–/– and AMPKα1–/– mice exhibited slower ketone consumption compared to WT mice, as indicated by higher blood BHB or urine BHB levels in the AMPKα2–/– and AMPKα1–/– mice even after the peak. Interestingly, fasting AMPKα2–/– and AMPKα1–/– mice exhibited significantly higher levels of ketone bodies in both blood and urine compared to fasting WT mice. . Specifically, AMPKα2ΔMusc mice showed approximately a twofold increase in blood BHB levels, and AMPKα2ΔMyo mice exhibited a 1.5-fold increase compared to their WT littermates after a 48-h fasting. However, blood BHB levels in AMPKα1ΔMusc and AMPKα1ΔMyo mice were as same as in WT mice. Notably, AMPKα2ΔMusc mice demonstrated a slower rate of BHB consumption in the BHB tolerance assay, whereas AMPKα1ΔMusc mice did not show such an effect. Declining rates of body weights and blood glucoses were similar among all the mice. Protein levels of SCOT, the rate-limiting enzyme of ketolysis, decreased in skeletal muscle of AMPKα2–/– mice. Moreover, SCOT protein ubiquitination increased in C2C12 cells either transfected with kinase-dead AMPKα2 or subjected to AMPKα2 inhibition. AMPKα2 physiologically binds and stabilizes SCOT, which is dependent on AMPKα2 activity.
Funder
National Institutes of Health
Publisher
Springer Science and Business Media LLC