Probabilistic nucleation governs time, amount, and location of mineral precipitation and geometry evolution in the porous medium

Author:

Nooraiepour Mohammad,Masoudi Mohammad,Hellevang Helge

Abstract

AbstractOne important unresolved question in reactive transport is how pore-scale processes can be upscaled and how predictions can be made on the mutual effect of chemical processes and fluid flow in the porous medium. It is paramount to predict the location of mineral precipitation besides their amount for understanding the fate of transport properties. However, current models and simulation approaches fail to predict precisely where crystals will nucleate and grow in the spatiotemporal domain. We present a new mathematical model for probabilistic mineral nucleation and precipitation. A Lattice Boltzmann implementation of the two-dimensional mineral surface was developed to evaluate geometry evolution when probabilistic nucleation criterion is incorporated. To provide high-resolution surface information on mineral precipitation, growth, and distribution, we conducted a total of 27 calcium carbonate synthesis experiments in the laboratory. The results indicate that nucleation events as precursors determine the location and timing of crystal precipitation. It is shown that reaction rate has primary control over covering the substrate with nuclei and, subsequently, solid-phase accumulation. The work provides insight into the spatiotemporal evolution of porous media by suggesting probabilistic and deterministic domains for studying reactive transport processes. We indicate in which length- and time-scales it is essential to incorporate probabilistic nucleation for valid predictions.

Funder

EEA Grants/Norway Grants

Norges Forskningsråd

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3