Perampanel attenuates oxidative stress and pyroptosis following subarachnoid hemorrhage via the SIRT3/FOXO3α pathway

Author:

Yang Hongqiao,Ding Changgeng,Cheng Ming,Sheng Zhengwei,Chen Lei,Chen Junhui,Wang Yuhai

Abstract

AbstractSubarachnoid hemorrhage (SAH) occurs most commonly after rupture of an aneurysm, resulting in high disability and mortality due to the absence of effective therapy. Its subsequent stage, early brain injury (EBI), promotes the sustainable development of injury in the brain and ultimately leads to poor prognosis. As a new antiepileptic drug, the effect of perampanel on EBI after SAH is unknown. Pyroptosis, a process of inflammatory programmed cell death, has been confirmed in most studies to play a substantial role in aggravating SAH-post EBI. Similarly, oxidative stress is closely involved in neuronal pyroptosis and the pathophysiological mechanism of SAH-post EBI, leading to a devastating outcome for SAH patients. Nonetheless, no studies have been conducted to determine whether perampanel reduces pyroptosis and oxidative stress in the context of SAH-induced EBI. Rat SAH model via endovascular perforation was constructed in this study, to assess the neuroprotective effect of perampanel on SAH-post EBI, and to clarify the possible molecular mechanism. By means of the neurological score, brain edema detection, FJB staining, immunofluorescence, WB, ELISA, and ROS assay, we found that perampanel can improve neuroscores and reduce brain edema and neuronal degeneration at 24 h after SAH; we also found that perampanel reduced oxidative stress, neuronal pyroptosis, and inhibition of the SIRT3-FOXO3α pathway at 24 h after SAH. When 3-TYP, an inhibitor of SIRT3, was administered, the effects of perampanel on the SIRT3-FOXO3a pathway, antioxidant stress, and neuronal pyroptosis were reversed. Taken together, our data indicate that perampanel attenuates oxidative stress and pyroptosis following subarachnoid hemorrhage via the SIRT3/FOXO3α pathway. This study highlights the application value of perampanel in subarachnoid hemorrhage and lays a foundation for clinical research and later transformation of perampanel in SAH.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The role of Foxo3a in neuron-mediated cognitive impairment;Frontiers in Molecular Neuroscience;2024-06-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3