Chronic phase advances reduces recognition memory and increases vascular cognitive dementia-like impairments in aged mice

Author:

Liu Jennifer A.,Bumgarner Jacob R.,Walker William H.,Meléndez-Fernández O. Hecmarie,Walton James C.,DeVries A. Courtney,Nelson Randy J.

Abstract

AbstractDisrupted or atypical light–dark cycles disrupts synchronization of endogenous circadian clocks to the external environment; extensive circadian rhythm desynchrony promotes adverse health outcomes. Previous studies suggest that disrupted circadian rhythms promote neuroinflammation and neuronal damage post-ischemia in otherwise healthy mice, however, few studies to date have evaluated these health risks with aging. Because most strokes occur in aged individuals, we sought to identify whether, in addition to being a risk factor for poor ischemic outcome, circadian rhythm disruption can increase risk for vascular cognitive impairment and dementia (VCID). We hypothesized that repeated 6 h phase advances (chronic jet lag; CJL) for 8 weeks alters cerebrovascular architecture leading to increased cognitive impairments in aged mice. Female CJL mice displayed impaired spatial processing during a spontaneous alternation task and reduced acquisition during auditory-cued associative learning. Male CJL mice displayed impaired retention of the auditory-cued associative learning task 24 h following acquisition. CJL increased vascular tortuosity in the isocortex, associated with increased risk for vascular disease. These results demonstrate that CJL increased sex-specific cognitive impairments coinciding with structural changes to vasculature in the brain. We highlight that CJL may accelerate aged-related functional decline and could be a crucial target against disease progression.

Funder

National Institute of Neurological Disorders and Stroke

National Institute of General Medical Sciences

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3