Anatomical damage caused by Bacillus thuringiensis variety israelensis in yellow fever mosquito Aedes aegypti (L.) larvae revealed by micro-computed tomography

Author:

Alba-Tercedor JavierORCID,Vilchez SusanaORCID

Abstract

AbstractWith micro-computed tomography techniques, using the single-distance phase-retrieval algorithm phase contrast, we reconstructed enhanced rendered images of soft tissues of Aedes aeqypti fourth instar larvae after Bti treatment. In contrast to previous publications based on conventional microscopy, either optical or electron microscopy, which were limited to partial studies, mostly in the form of histological sections, here we show for the first time the effects of Bti on the complete internal anatomy of an insect. Using 3D rendered images it was possible to study the effect of the bacterium in tissues and organs, not only in sections but also as a whole. We compared the anatomy of healthy larvae with the changes undergone in larvae after being exposed to Bti (for 30 min, 1 h and 6 h) and observed the progressive damage that Bti produce. Damage to the midgut epithelia was confirmed, with progressive swelling of the enterocytes, thickening epithelia, increase of the vacuolar spaces and finally cell lysis, producing openings in the midgut walls. Simultaneously, the larvae altered their motility, making it difficult for them to rise to the surface and position the respiratory siphon properly to break surface tension and breathe. Internally, osmotic shock phenomena were observed, resulting in a deformation of the cross-section shape, producing the appearance of a wide internal space between the cuticle and the internal structures and a progressive collapse of the tracheal trunks. Taken together, these results indicate the death of the larvae, not by starvation as a consequence of the destruction of the epithelia of the digestive tract as previously stated, but due to a synergic catastrophic multifactor process in addition to asphyxia due to a lack of adequate gas exchange.

Funder

Junta de Andalucia

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3