A multiple criteria decision analysis based approach to remove uncertainty in SMP models

Author:

Yenduri Gokul,Gadekallu Thippa Reddy

Abstract

AbstractSoftware has to be updated frequently to match the customer needs. If software maintainability is not given priority, it affects the software development life cycle and maintenance expenses, which deplete organizational assets. Before releasing software, maintainability must be estimated, as the impact of bugs and errors can affect the cost and reputation of the organization after deployment. Regardless of the programming paradigm, it’s important to assess software maintainability. Many software maintainability prediction models’ compatibilities with new programming paradigms are criticized because their limited applicability over heterogeneous datasets. Due this challenge small and medium-sized organizations may even skip the maintainability assessment, resulting in huge lose to such organizations. Motivated by this fact, we used Genetic Algorithm optimized Random Forest technique (GA) for software maintainability prediction models over heterogeneous datasets. To find optimal model for software maintainability prediction, the Technique for Order preference by Similarity to Ideal Solution (TOPSIS), a popular multiple-criteria decision-making model, is adopted. From the results, it is concluded that the GA is optimal for predicting maintainability of software developed in various paradigms.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence and Automation for the Future of Startups;Advances in Business Strategy and Competitive Advantage;2023-12-15

2. Firefly Optimized Federated SVM Model for Breast Cancer Prediction;2023 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE);2023-09-24

3. Selection of suitable biomass conservation process techniques: a versatile approach to normal wiggly interval-valued hesitant fuzzy set using multi-criteria decision making;Complex & Intelligent Systems;2023-05-29

4. A review on soft computing approaches for predicting maintainability of software: State‐of‐the‐art, technical challenges, and future directions;Expert Systems;2023-02-17

5. Blockchain for Software Maintainability in Healthcare;Proceedings of the 24th International Conference on Distributed Computing and Networking;2023-01-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3