Enhancement of endothelial function and attenuation of portal vein injury using mesenchymal stem cells carrying miRNA-25-3p

Author:

Nie Guole,Zhang Honglong,Luo Wei,Zhu Xingwang,Xie Danna,Yan Jun,Wang Haiping,Li XunORCID

Abstract

AbstractThe aims of this study were to determine whether human umbilical cord mesenchymal stem cells (hucMSCs) modified by miRNA-25-3p (miR-25-3p) overexpression could promote venous endothelial cell proliferation and attenuate portal endothelial cell injury. HucMSCs and human umbilical vein endothelial cells (HUVEC) were isolated and cultured from human umbilical cord and characterized. Lentiviral vectors expressing miRNA-25-3p were transfected into hucMSCs and confirmed by PCR. We verified the effect of miR-25-3p-modified hucMSCs on HUVEC by cell co-culture and cell supernatant experiments. Subsequently, exosomes of miR-25-3p-modified hucMSCs were isolated from cell culture supernatants and characterized by WB, NTA and TEM. We verified the effects of miR-25-3p-modified exosomes derived from hucMSCs on HUVEC proliferation, migration, and angiogenesis by in vitro cellular function experiments. Meanwhile, we further examined the downstream target genes and signaling pathways potentially affected by miR-25-3p-modified hucMSC-derived exosomes in HUVEC. Finally, we established a rat portal vein venous thrombosis model by injecting CM-DiR-labeled hucMSCs intravenously into rats and examining the homing of cells in the portal vein by fluorescence microscopy. Histological and immunohistochemical experiments were used to examine the effects of miRNA-25-3p-modified hucMSCs on the proliferation and damage of portal vein endothelial cells. Primary hucMSCs and HUVECs were successfully isolated, cultured and characterized. Primary hucMSCs were modified with a lentiviral vector carrying miR-25-3p at MOI 80. Co-culture and cell supernatant intervention experiments showed that overexpression of miRNA-25-3p in hucMSCs enhanced HUVEC proliferation, migration and tube formation in vitro. We successfully isolated and characterized exosomes of miR-25-3p-modified hucMSCs, and exosome intervention experiments demonstrated that miR-25-3p-modified exosomes derived from hucMSCs similarly enhanced the proliferation, migration, and angiogenesis of HUVECs. Subsequent PCR and WB analyses indicated PTEN/KLF4/AKT/ERK1/2 as potential pathways of action. Analysis in a rat portal vein thrombosis model showed that miR-25-3p-modified hucMSCs could homing to damaged portal veins. Subsequent histological and immunohistochemical examinations demonstrated that intervention with miR-25-3p overexpression-modified hucMSCs significantly reduced damage and attenuated thrombosis in rat portal veins. The above findings indicate suggest that hucMSCs based on miR-25-3p modification may be a promising therapeutic approach for use in venous thrombotic diseases.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3