Rootstock effects on scion gene expression in maritime pine

Author:

López-Hinojosa M.,de María N.,Guevara M. A.,Vélez M. D.,Cabezas J. A.,Díaz L. M.,Mancha J. A.,Pizarro A.,Manjarrez L. F.,Collada C.,Díaz-Sala C.,Cervera Goy M. T.

Abstract

AbstractPines are the dominant conifers in Mediterranean forests. As long-lived sessile organisms that seasonally have to cope with drought periods, they have developed a variety of adaptive responses. However, during last decades, highly intense and long-lasting drought events could have contributed to decay and mortality of the most susceptible trees. Among conifer species, Pinus pinaster Ait. shows remarkable ability to adapt to different environments. Previous molecular analysis of a full-sib family designed to study drought response led us to find active transcriptional activity of stress-responding genes even without water deprivation in tolerant genotypes. To improve our knowledge about communication between above- and below-ground organs of maritime pine, we have analyzed four graft-type constructions using two siblings as rootstocks and their progenitors, Gal 1056 and Oria 6, as scions. Transcriptomic profiles of needles from both scions were modified by the rootstock they were grafted on. However, the most significant differential gene expression was observed in drought-sensitive Gal 1056, while in drought-tolerant Oria 6, differential gene expression was very much lower. Furthermore, both scions grafted onto drought-tolerant rootstocks showed activation of genes involved in tolerance to abiotic stress, and is most remarkable in Oria 6 grafts where higher accumulation of transcripts involved in phytohormone action, transcriptional regulation, photosynthesis and signaling has been found. Additionally, processes, such as those related to secondary metabolism, were mainly associated with the scion genotype. This study provides pioneering information about rootstock effects on scion gene expression in conifers.

Funder

Universidad de Alcalá

Spanish Ministry of Economy, Industry and Competitiveness

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3