Neoadjuvant vascular-targeted photodynamic therapy improves survival and reduces recurrence and progression in a mouse model of urothelial cancer

Author:

Rosenzweig Barak,Corradi Renato B.,Budhu Sadna,Alvim Ricardo,Recabal Pedro,La Rosa Stephen,Somma Alex,Monette Sebastien,Scherz Avigdor,Kim Kwanghee,Coleman Jonathan A.

Abstract

AbstractLocally advanced urothelial cancer has high recurrence and progression rates following surgical treatment. This highlights the need to develop neoadjuvant strategies that are both effective and well-tolerated. We hypothesized that neoadjuvant sub-ablative vascular-targeted photodynamic therapy (sbVTP), through its immunotherapeutic mechanism, would improve survival and reduce recurrence and progression in a murine model of urothelial cancer. After urothelial tumor implantation and 17 days before surgical resection, mice received neoadjuvant sbVTP (WST11; Tookad Soluble, Steba Biotech, France). Local and systemic response and survival served as measures of therapeutic efficacy, while immunohistochemistry and flow cytometry elucidated the immunotherapeutic mechanism. Data analysis included two-sided Kaplan–Meier, Mann–Whitney, and Fischer exact tests. Tumor volume was significantly smaller in sbVTP-treated animals than in controls (135 mm3 vs. 1222 mm3, P < 0.0001) on the day of surgery. Systemic progression was significantly lower in sbVTP-treated animals (l7% vs. 30%, P < 0.01). Both median progression-free survival and overall survival were significantly greater among animals that received sbVTP and surgery than among animals that received surgery alone (P < 0.05). Neoadjuvant-treated animals also demonstrated significantly lower local recurrence. Neoadjuvant sbVTP was associated with increased early antigen-presenting cells, and subsequent improvements in long-term memory and increases in effector and active T-cells in the spleen, lungs, and blood. In summary, neoadjuvant sbVTP delayed local and systemic progression, prolonged progression-free and overall survival, and reduced local recurrence, thereby demonstrating therapeutic efficacy through an immune-mediated response. These findings strongly support its evaluation in clinical trials.

Funder

The Wade Thompson Foundation

NIH

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3