Abstract
AbstractArtificial neural networks (ANNs) are biologically inspired algorithms designed to simulate the way in which the human brain processes information. In sample preparation for bioanalysis, liquid–liquid extraction (LLE) represents an important step with the extraction solvent selection is the key laborious step. In the current work, a robust and reliable ANNs model for LLE solvent prediction was generated which could predict the suitable solvent for analyte extraction. The developed ANNs model takes a set of chosen descriptors for the cited analyte as an input and predicts the corresponding Hansen solubility parameters of the suitable extraction solvent as a model output. Then, from the solvent combination’s appendix, the analyst can identify the proposed extraction solvents' combination for the cited analyte easily and efficiently. For the experimental validation of the model prediction capabilities, twenty structurally diverse drugs belonging to different pharmacological classes were extracted from human plasma. The extraction process was performed using the predicted extraction solvent combination for each drug and quantitively estimated by HPLC/UV methods to assess their extraction recovery. The developed LLE solvent prediction model is in- line with the global trend towards green chemistry since it limits the consumption of organic solvents.
Publisher
Springer Science and Business Media LLC
Reference88 articles.
1. Hansen, F., Øiestad, E. L. & Pedersen-Bjergaard, S. Bioanalysis of pharmaceuticals using liquid-phase microextraction combined with liquid chromatography–mass spectrometry. J. Pharm. Biomed. Anal. 189, 113446 (2020).
2. Prabu, S. L., Suriyaprakash, T. N. K. Extraction of Drug from the Biological Matrix: A Review (IntechOpen, 2012).
3. Shah, V. P. The history of bioanalytical method validation and regulation: Evolution of a guidance document on bioanalytical methods validation. AAPS J. 9, E43 (2007).
4. Chan, C. C., Lee, Y. C., Lam, H., Zhang, X.-M. Analytical Method Validation and Instrument Performance Verification (Wiley, 2004).
5. Murugan, S., Pravallika, N., Sirisha, P. & Chandrakala, K. A review on bioanalytical method development and validation by using LC-MS/MS. J. Chem. Pharm. Sci. 6, 41–45 (2013).