Winter wheat yield prediction using convolutional neural networks from environmental and phenological data

Author:

Srivastava Amit Kumar,Safaei Nima,Khaki Saeed,Lopez Gina,Zeng Wenzhi,Ewert Frank,Gaiser Thomas,Rahimi Jaber

Abstract

AbstractCrop yield forecasting depends on many interactive factors, including crop genotype, weather, soil, and management practices. This study analyzes the performance of machine learning and deep learning methods for winter wheat yield prediction using an extensive dataset of weather, soil, and crop phenology variables in 271 counties across Germany from 1999 to 2019. We proposed a Convolutional Neural Network (CNN) model, which uses a 1-dimensional convolution operation to capture the time dependencies of environmental variables. We used eight supervised machine learning models as baselines and evaluated their predictive performance using RMSE, MAE, and correlation coefficient metrics to benchmark the yield prediction results. Our findings suggested that nonlinear models such as the proposed CNN, Deep Neural Network (DNN), and XGBoost were more effective in understanding the relationship between the crop yield and input data compared to the linear models. Our proposed CNN model outperformed all other baseline models used for winter wheat yield prediction (7 to 14% lower RMSE, 3 to 15% lower MAE, and 4 to 50% higher correlation coefficient than the best performing baseline across test data). We aggregated soil moisture and meteorological features at the weekly resolution to address the seasonality of the data. We also moved beyond prediction and interpreted the outputs of our proposed CNN model using SHAP and force plots which provided key insights in explaining the yield prediction results (importance of variables by time). We found DUL, wind speed at week ten, and radiation amount at week seven as the most critical features in winter wheat yield prediction.

Funder

German Federal Ministry of Education and Research

Deutsche Forschungsgemeinschaft

Rheinische Friedrich-Wilhelms-Universität Bonn

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3