Observations of lightning in relation to transitions in volcanic activity during the 3 June 2018 Fuego Eruption

Author:

Schultz Christopher J.,Andrews Virginia P.,Genareau Kimberly D.ORCID,Naeger Aaron R.

Abstract

AbstractSatellite and ground-based remote sensing are combined to characterize lightning occurrence during the 3 June 2018 Volcán de Fuego eruption in Guatemala. The combination of the space-based Geostationary Lightning Mapper (GLM) and ground-based Earth Networks Total Lightning Network observed two distinct periods of lightning during this eruption totaling 75 unique lightning flash occurrences over five hours (57 in cloud, 18 cloud-to-ground). The first period of lightning coincided with the rapid growth of the ash cloud, while the second maxima occurred near the time of a deadly pyroclastic density current (PDC) and thunderstorm. Ninety-one percent of the lightning during the event was observed by only one of the lightning sensors, thus showing the importance of combining lightning datasets across multiple frequencies to characterize electrical activity in volcanic eruptions. GLM flashes during the event had a median total optical energy and flash length of 16 fJ, and 12 km, respectively. These median GLM flash energies and lengths observed in the volcanic plume are on the lower end of the flash spectrum because flashes observed in surrounding thunderstorms on 3 June had larger median total optical energy values (130 fJ) and longer median flash lengths (20 km). All 18 cloud-to-ground flashes were negative polarity, supportive of net negative charge within the plume. Mechanisms for the generation of the secondary lightning maxima are discussed based on the presence and potential interaction between ash plume, thunderstorm, and PDC transport during this secondary period of observed lightning.

Funder

NASA's ACES Internship Program in 2018.

Dr. Tsengdar Lee of NASA's Research and Analysis Program, Weather Focus Area, as part of the SPoRT Center at Marshall Space Flight Center.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3