Terrestrial planet and asteroid belt formation by Jupiter–Saturn chaotic excitation

Author:

Lykawka Patryk Sofia,Ito Takashi

Abstract

AbstractThe terrestrial planets formed by accretion of asteroid-like objects within the inner solar system’s protoplanetary disk. Previous works have found that forming a small-mass Mars requires the disk to contain little mass beyond ~ 1.5 au (i.e., the disk mass was concentrated within this boundary). The asteroid belt also holds crucial information about the origin of such a narrow disk. Several scenarios may produce a narrow disk. However, simultaneously replicating the four terrestrial planets and the inner solar system properties remains elusive. Here, we found that chaotic excitation of disk objects generated by a near-resonant configuration of Jupiter–Saturn can create a narrow disk, allowing the formation of the terrestrial planets and the asteroid belt. Our simulations showed that this mechanism could typically deplete a massive disk beyond ~ 1.5 au on a 5–10 Myr timescale. The resulting terrestrial systems reproduced the current orbits and masses of Venus, Earth and Mars. Adding an inner region disk component within ~ 0.8–0.9 au allowed several terrestrial systems to simultaneously form analogues of the four terrestrial planets. Our terrestrial systems also frequently satisfied additional constraints: Moon-forming giant impacts occurring after a median ~ 30–55 Myr, late impactors represented by disk objects formed within 2 au, and effective water delivery during the first 10–20 Myr of Earth’s formation. Finally, our model asteroid belt explained the asteroid belt’s orbital structure, small mass and taxonomy (S-, C- and D/P-types).

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3