Towards a universal and privacy preserving EEG-based authentication system

Author:

Bidgoly Amir Jalaly,Bidgoly Hamed Jalaly,Arezoumand Zeynab

Abstract

AbstractEEG-based authentication has gained much interest in recent years. However, despite its growing appeal, there are still various challenges to their practical use, such as lack of universality, lack of privacy-preserving, and lack of ease of use. In this paper, we have tried to provide a model for EEG-based authentication by focusing on these three challenges. The proposed method, employing deep learning methods, can capture the fingerprint of the users’ EEG signals for authentication aim. It is capable of verifying any claimed identity just by having a genuine EEG fingerprint and taking a new EEG sample of the user who has claimed the identity, even those who were not observed during the training. The role of the fingerprint function is similar to the hash functions in password-based authentication and it helps preserve the user’s privacy by storing the fingerprint, rather than the raw EEG signals. Moreover, for targeting the lack of ease of use challenge, Gram-Schmidt orthogonalization process reduces the required number of channels to just three ones. The experiments show that the proposed method can reach around 98% accuracy in the authentication of completely new users with only three channels of Oz, T7, and Cz.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3