Author:
Carballeira Rafael,Dolgitzer David,Zhao Peng,Zeng Debing,Chen Yusui
Abstract
AbstractWe derive the evolution equations for two-time correlation functions of a generalized non-Markovian open quantum system based on a modified stochastic Schrödinger equation approach. We find that the two-time reduced propagator, an object that used to be characterized by two independent stochastic processes in the Hilbert space of the system, can be simplified and obtained by taking ensemble average over one single noise. This discovery can save the cost of computation, and accelerate the converging process when taking the average over noisy trajectories. As a result, our method can be widely applied to many open quantum models, especially large-scale systems and extend the quantum regression theory to the non-Markovian case. In the short-time simulations, it is observed a significant difference between Markovian and non-Markovian cases, which can be applied to realize the environmental spectrum detection and enhance the measurement sensitivity in varying open quantum systems.
Funder
Joseph E. Schuh scholarship at Saint Peter’s University
Institutional Support of Research and Creativity grant at New York Institute of Technology
U.S. Department of Education
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献