iDetect for vulnerability detection in internet of things operating systems using machine learning

Author:

Al-Boghdady Abdullah,El-Ramly Mohammad,Wassif Khaled

Abstract

AbstractInternet of Things (IoT) 's devices are ubiquitous and operate in a heterogonous environment with potential security breaches. IoT Operating Systems (IoT OSs) are the backbone software for running such devices. If IoT OSs are vulnerable to security breaches, higher-level security measures may not help. This paper aims to use Machine Learning (ML) to create a tool called iDetect for detecting vulnerabilities in C/C++ source code of IoT OSs. The source code for 16 releases of IoT OSs (RIOT, Contiki, FreeRTOS, Amazon FreeRTOS) and the Software Assurance Reference Dataset (SARD) were used to create a labeled dataset of vulnerable and benign code with the reference being the Common Weakness Enumeration (CWE) vulnerabilities present in IoT OSs. Studies showed that only a subset of CWEs is present in the C/C++ source code of low-end IoT OSs.The labeled dataset was used to train three ML models for vulnerability detection: Random Forest (RF), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN). The three models were used independently and RF; compared to CNN and RNN, gave the highest accuracy during the testing phase for binary and multiclass classification. RF was chosen as iDetect's ML classifier. Further evaluation was done on an unseen dataset of 322 code snippets taken from TinyOS. iDetect achieved a macro-averaged F1 score (mF1) of 98.5% and weighted-average F1 score (wF1) of 98% for multiclass classification, F1 score (F1) of 97.8% for binary classification, and superior results compared to all three Static Analysis Tools (SATs) used to collect the training dataset.

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference32 articles.

1. Obaidat, M., Khodjaeva, M., Holst, J. & Ben Zid, M. Security and privacy challenges in vehicular ad hoc networks. in Connected Vehicles in the Internet of Things. 223–251 (Springer, 2020).

2. dos Santos, D. et al. New DNS Vulnerabilities, Impacting Millions of Enterprise and Consumer Devices (Forescout Research Labs & JSOF, 2022).

3. C. V. a. E. Database. Cybersecurity products and services from around the world. in CVE, 2022. [Online]. http://cve.mitre.org/. Accessed 1 Jul 2022 (2022).

4. Hung, M. Leading the IoT: Gartner Insights on How to Lead in a Connected World. (Gartner Research, 2017).

5. Bertino, E. & Islam, N. Botnets and internet of things security. Computer 50, 76–79 (2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3