Stiffness characteristics analysis of a Biglide industrial parallel robot considering the gravity of mobile platform and links

Author:

Guan Jiuliang,Zou Ping,Xu Jilin,Wang Wenjie

Abstract

AbstractFor the machining process of industrial parallel robots, the gravity generated by the weight of mobile platform and links will lead to the deviation of the expected machining trajectory of the tool head. In order to evaluate this deviation and then circumvent it, it is necessary to perform the robotic stiffness model. However, the influence of gravity is seldom considered in the previous stiffness analysis. This paper presents an effective stiffness modeling method for industrial parallel robots considering the link/joint compliance, the mobile platform/link gravity, and the mass center position of each link. First, the external gravity corresponding to each component is determined by the static model under the influence of gravity and mass center position. Then, the corresponding Jacobian matrix of each component is obtained by the kinematic model. Subsequently, the compliance of each component is obtained by cantilever beam theory and FEA-based virtual experiments. In turn, the stiffness model of the whole parallel robot is determined and the Cartesian stiffness matrix of the parallel robot is calculated at several positions. Moreover, the principal stiffness distribution of the tool head in each direction over the main workspace is predicted. Finally, the validity of the stiffness model with gravity is experimentally proved by the comparison of the calculated stiffness and measured stiffness in identical conditions.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and development of a flexible-rigid Triglide sorting manipulator;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-09-12

2. Comprehensive study of an eccentric universal joint for parallel coordinate measuring machine;Measurement Science and Technology;2024-08-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3