Optimization of OPEFB lignocellulose transformation process through ionic liquid [TEA][HSO4] based pretreatment

Author:

Nurdin Muhammad,Abimanyu Haznan,Putriani Hadijah,Setiawan L. O. M. Idal,Maulidiyah Maulidiyah,Wibowo Dwiprayogo,Ansharullah Ansharullah,Natsir Muh.,Salim La Ode Agus,Arham Zul,Mustapa Faizal

Abstract

AbstractResearch on the transformation of Oil Palm Empty Fruit Bunches (OPEFB) through pretreatment process using ionic liquid triethylammonium hydrogen sulphate (IL [TEA][HSO4]) was completed. The stages of the transformation process carried out were the synthesis of IL with the one-spot method, optimization of IL composition and pretreatment temperature, and IL recovery. The success of the IL synthesis stage was analyzed by FTIR, H-NMR and TGA. Based on the results obtained, it showed that IL [TEA][HSO4] was successfully synthesized. This was indicated by the presence of IR absorption at 1/λ = 2814.97 cm−1, 1401.07 cm−1, 1233.30 cm−1 and 847.92 cm−1 which were functional groups for NH, CH3, CN and SO2, respectively. These results were supported by H-NMR data at δ (ppm) = 1.217–1.236 (N–CH2–CH3), 3.005–3.023 (–H), 3.427–3.445 (N–H+) and 3.867 (N+H3). The TGA results showed that the melting point and decomposition temperature of the IL were 49 °C and 274.3 °C, respectively. Based on pretreatment optimization, it showed that the best IL composition for cellulose production was 85 wt%. Meanwhile, temperature optimization showed that the best temperature was 120 °C. In these two optimum conditions, the cellulose content was obtained at 45.84 wt%. Testing of IL [TEA][HSO4] recovery performance for reuse has shown promising results. During the pretreatment process, IL [TEA][HSO4] recovery effectively increased the cellulose content of OPEFB to 29.13 wt% and decreased the lignin content to 32.57%. The success of the recovery process is indicated by the increasing density properties of IL [TEA][HSO4]. This increase occurs when using a temperature of 80–100 °C. The overall conditions obtained from this work suggest that IL [TEA][HSO4] was effective during the transformation process of OPEFB into cellulose. This shows the potential of IL [TEA][HSO4] in the future in the renewable energy sector.

Funder

Ministry of Research and Technology/ National Research and Innovation Agency (KEMRISTEK/BRIN) Republic of Indonesia

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3