Dense monocular depth estimation for stereoscopic vision based on pyramid transformer and multi-scale feature fusion

Author:

Xia Zhongyi,Wu Tianzhao,Wang Zhuoyan,Zhou Man,Wu Boqi,Chan C. Y.,Kong Ling Bing

Abstract

AbstractStereoscopic display technology plays a significant role in industries, such as film, television and autonomous driving. The accuracy of depth estimation is crucial for achieving high-quality and realistic stereoscopic display effects. In addressing the inherent challenges of applying Transformers to depth estimation, the Stereoscopic Pyramid Transformer-Depth (SPT-Depth) is introduced. This method utilizes stepwise downsampling to acquire both shallow and deep semantic information, which are subsequently fused. The training process is divided into fine and coarse convergence stages, employing distinct training strategies and hyperparameters, resulting in a substantial reduction in both training and validation losses. In the training strategy, a shift and scale-invariant mean square error function is employed to compensate for the lack of translational invariance in the Transformers. Additionally, an edge-smoothing function is applied to reduce noise in the depth map, enhancing the model's robustness. The SPT-Depth achieves a global receptive field while effectively reducing time complexity. In comparison with the baseline method, with the New York University Depth V2 (NYU Depth V2) dataset, there is a 10% reduction in Absolute Relative Error (Abs Rel) and a 36% decrease in Root Mean Square Error (RMSE). When compared with the state-of-the-art methods, there is a 17% reduction in RMSE.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3