An ultra-wide scanner for large-area high-speed atomic force microscopy with megapixel resolution

Author:

Marchesi Arin,Umeda Kenichi,Komekawa Takumi,Matsubara Takeru,Flechsig Holger,Ando Toshio,Watanabe Shinji,Kodera Noriyuki,Franz Clemens M.

Abstract

AbstractHigh-speed atomic force microscopy (HS-AFM) is a powerful tool for visualizing the dynamics of individual biomolecules. However, in single-molecule HS-AFM imaging applications, x,y-scanner ranges are typically restricted to a few hundred nanometers, preventing overview observation of larger molecular assemblies, such as 2-dimensional protein crystal growth or fibrillar aggregation. Previous advances in scanner design using mechanical amplification of the piezo-driven x,y-positioning system have extended the size of HS-AFM image frames to several tens of micrometer, but these large scanners may suffer from mechanical instabilities at high scan speeds and only record images with limited pixel numbers and comparatively low lateral resolutions (> 20–100 nm/pixel), complicating single-molecule analysis. Thus, AFM systems able to image large sample areas at high speeds and with nanometer resolution have still been missing. Here, we describe a HS-AFM sample-scanner system able to record large topographic images (≤ 36 × 36 µm2) containing up to 16 megapixels, providing molecular resolution throughout the image frame. Despite its large size, the flexure-based scanner features a high resonance frequency (> 2 kHz) and delivers stable operation even at high scans speeds of up to 7.2 mm/s, minimizing the time required for recording megapixel scans. We furthermore demonstrate that operating this high-speed scanner in time-lapse mode can simultaneously identify areas of spontaneous 2-dimensional Annexin A5 crystal growth, resolve the angular orientation of large crystalline domains, and even detect rare crystal lattice defects, all without changing scan frame size or resolution. Dynamic processes first identified from overview scans can then be further imaged at increased frame rates in reduced scan areas after switching to conventional HS-AFM scanning. The added ability to collect large-area, high-resolution images of complex samples within biological-relevant time frames extends the capabilities of HS-AFM from single-molecule imaging to the study of large dynamic molecular arrays. Moreover, large-area HS-AFM scanning can generate detailed structural data sets from a single scan, aiding the quantitative analysis of structurally heterogenous samples, including cellular surfaces.

Funder

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3