Quantum error-correction using humming sparrow optimization based self-adaptive deep cnn noise correction module

Author:

Shinde Umesh Uttamrao,Bandaru Ravikumar

Abstract

AbstractThe error correction model’s main purpose in heavy hexagonal quantum codes is to improve their reliability for quantum computing applications. Existing challenges include finding the optimal decoder for quantum error correction in heavy hexagonal codes. This research propels the frontier of quantum error correction, with a specific focus on tailoring topological quantum error-correcting codes for the unique challenges posed by superconducting qubits in quantum computers. In response, this research harnesses the power of deep learning, presenting a Humming sparrow optimization based self-adaptive deep CNN (HSO-based SADCNN) model designed for heavy hexagonal codes. This decoder incorporates a Self-adaptive Deep CNN (SADCNN) Noise Correction Module, a sophisticated component to refine error correction. The proposed decoder’s efficacy is rigorously evaluated across varying code distances (three, five, and seven) using the Humming Sparrow Optimization (HSO) algorithm. HSO, intricately designed to fine-tune the SADCNN decoder, significantly enhances its error correction capabilities for heavy hexagonal quantum codes. The algorithm seamlessly integrates advantageous characteristics of herding and tracing from Humming Bird optimization and Sparrow search optimization, representing a critical stride in advancing the reliability of quantum computing applications, particularly within the intricate domain of heavy hexagonal quantum codes. Based upon the achievements, the Training Percentage (TP) 90 metrics demonstrate significant progress, boasting a commendable accuracy of $$97.35\%$$ 97.35 % , coupled with reduced logical error probability and a diminished bit error rate, marked at 5.51 and 3.72, respectively.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3