Photophysiologically active green, red, and brown macroalgae living in the Arctic Polar Night

Author:

Summers Natalie,Fragoso Glaucia M.,Johnsen Geir

Abstract

AbstractArctic macroalgae species have developed different growth strategies to survive extreme seasonal changes in irradiance in polar regions. We compared photophysiological parameters such as the light saturation parameter (Ek) and pigment composition of green, red, and brown macroalgae collected in January (Polar Night) and October 2020 (end of the light season). Macroalgae in January appeared healthier (morphologically) and had longer lamina (new growth) than those in October. EK values for red, and brown algae were higher with lower maximum quantum yield of PS II fluorescence (Fv/Fm) in January versus October. Furthermore, in January, new tissues in kelp species had higher EK than the older tissue. Higher EK and lower Fv/Fm during the Polar Night indicates that the photosynthetic apparatus is active but slow. Furthermore, we discuss Chlorophyll (Chl) a emission spectra under blue and green excitation light to determine the ratio of Chl a in photosystem II (PS II) vs photosystem I (PS I). Absorbance spectra of P. palmata was used to interpret the emission spectra. The observed spectral shifts in the absorbance and reflectance spectra of different macroalgae is discussed. Photophysiological methods provide health information complementary to future mapping and monitoring of macroalgae. These results reveal that macroalgae grow new tissue in darkness.

Funder

Norges Forskningsråd

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3