Path loss modeling and performance evaluation of double IRSs-aided wireless communication systems based on spatial scattering channel model

Author:

Wang Jihong,Ni Hao

Abstract

AbstractIntelligent reflecting surface (IRS) is a key enabling technology to reshape the electromagnetic propagation environment and enhance the communication performance. Current single IRS-aided or multiple distributed IRSs-aided wireless communication systems leave inter-IRSs collaboration out of consideration, and as a result, the system performance may be severely restricted. For cooperative double IRSs-aided wireless communication systems, dyadic backscatter channel model is widely used in the performance analysis and optimization. However, the impact of factors such as the size and gain of IRS elements is omitted. As a result, the performance quantification and evaluation are inaccurate. In order to avoid the above limitations, spatial scattering channel model is leveraged to quantify the path loss of the double reflection link in typical application scenarios of double IRSs-aided wireless communication systems. When the near-field condition is satisfied, the electromagnetic wave signal transmitted between IRSs is a spherical wave, which leads to high-rank channel and a lower signal to noise ratio. This paper considers the rank-1 inter-IRSs equivalent channel and derives the closed-form received signal power which reveals its relationship with the deployment of IRSs and the physical and electromagnetic properties of IRSs. Taking the impact of near/far-field effects of IRS on signal propagation further into consideration, the network configurations under which double cooperative IRSs can enhance the system performance are recognized. Simulation results show that whether double IRSs should be selected to assist in the communication between the transmitter and the receiver depends on practical network configurations, and the same number of elements should be assigned to the two IRSs to maximize the system performance if they are adopted.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3