Abstract
AbstractThe use of nucleic acid as a drug substance for vaccines and other gene-based medicines continues to evolve. Here, we have used a technology originally developed for mRNA in vivo delivery to enhance the immunogenicity of DNA vaccines. We demonstrate that neutralizing antibodies produced in rabbits and nonhuman primates injected with lipid nanoparticle (LNP)-formulated Andes virus or Zika virus DNA vaccines are elevated over unformulated vaccine. Using a plasmid encoding an anti-poxvirus monoclonal antibody (as a reporter of protein expression), we showed that improved immunogenicity is likely due to increased in vivo DNA delivery, resulting in more target protein. Specifically, after four days, up to 30 ng/mL of functional monoclonal antibody were detected in the serum of rabbits injected with the LNP-formulated DNA. We pragmatically applied the technology to the production of human neutralizing antibodies in a transchromosomic (Tc) bovine for use as a passive immunoprophylactic. Production of neutralizing antibody was increased by >10-fold while utilizing 10 times less DNA in the Tc bovine. This work provides a proof-of-concept that LNP formulation of DNA vaccines can be used to produce more potent active vaccines, passive countermeasures (e.g., Tc bovine), and as a means to produce more potent DNA-launched immunotherapies.
Funder
United States Department of Defense | Defense Advanced Research Projects Agency
Publisher
Springer Science and Business Media LLC
Reference36 articles.
1. Brocato, R.L. & Hooper, J.W. Progress on the Prevention and Treatment of Hantavirus Disease. Viruses 11(2019).
2. Musso, D. & Gubler, D. J. Zika Virus. Clin. Microbiol. Rev. 29, 487–524 (2016).
3. Wang, A., Thurmond, S., Islas, L., Hui, K. & Hai, R. Zika virus genome biology and molecular pathogenesis. Emerg. Microbes Infect. 6, e13 (2017).
4. Fernandez, E. & Diamond, M. S. Vaccination strategies against Zika virus. Curr. Opin. virology 23, 59–67 (2017).
5. Musso, D., Baud, D. & Gubler, D. J. Zika virus: what do we know? Clin. microbiology infection: Off. Publ. Eur. Soc. Clin. Microbiology Infect. Dis. 22, 494–496 (2016).
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献