The contribution of community-based conservation models to conserving large herbivore populations

Author:

Kiffner Christian,Foley Charles A. H.,Lee Derek E.,Bond Monica L.,Kioko John,Kissui Bernard M.,Lobora Alex L.,Foley Lara S.,Nelson Fred

Abstract

AbstractIn East Africa, community-based conservation models (CBCMs) have been established to support the conservation of wildlife in fragmented landscapes like the Tarangire Ecosystem, Tanzania. To assess how different management approaches maintained large herbivore populations, we conducted line distance surveys and estimated seasonal densities of elephant, giraffe, zebra, and wildebeest in six management units, including three CBCMs, two national parks (positive controls), and one area with little conservation interventions (negative control). Using a Monte-Carlo approach to propagate uncertainties from the density estimates and trend analysis, we analyzed the resulting time series (2011–2019). Densities of the target species were consistently low in the site with little conservation interventions. In contrast, densities of zebra and wildebeest in CBCMs were similar to national parks, providing evidence that CBCMs contributed to the stabilization of these migratory populations in the central part of the ecosystem. CBCMs also supported giraffe and elephant densities similar to those found in national parks. In contrast, the functional connectivity of Lake Manyara National Park has not been augmented by CBCMs. Our analysis suggests that CBCMs can effectively conserve large herbivores, and that maintaining connectivity through CBCMs should be prioritized.

Funder

The School for Field Studies

Maliasili

Columbus Zoo

PAMS Foundation

Rufford Foundation

Sacramento Zoo

Tulsa Zoo

African Wildlife Foundation

Chem Chem Associations

IGF Foundation

Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3