Author:
Ekanayake Gayani,Gohmann Reid,Mackey David
Abstract
AbstractThe plant apoplast has a crucial role in photosynthesis and respiration due to its vital function in gas exchange and transpiration. The apoplast is also a dynamic environment that participates in many ion and nutrient transport processes via plasma membrane-localized proteins. Furthermore, diverse microbes colonize the plant apoplast, including the hemibiotrophic bacterial pathogen,Pseudomonas syringaepv. tomato (Pto) strain DC3000.PtoDC3000 initiates pathogenesis upon moving through stomata into the apoplast and then proliferating to high levels. Here we developed a centrifugation-based method to isolate and quantify the apoplast fluid in Arabidopsis leaves, without significantly damaging the tissue. We applied the simple apoplast extraction method to demonstrate that thePtoDC3000 type III bacterial effectors AvrE1 and HopM1 induce hydration of the Arabidopsis apoplast in advance of macroscopic water-soaking, disruption of host cell integrity, and disease progression. Finally, we demonstrate the utility of the apoplast extraction method for isolation of bacteria proliferating in the apoplast.
Funder
United States National Institute of Health T32 grant
NSF | BIO | Division of Integrative Organismal Systems
US Department of Agriculture (National Institute of Food and Agriculture) Next-generation BioGreen 21 program of korean RDA
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献