Author:
Foocharoen Chingching,Thinkhamrop Wilaiphorn,Chaichaya Nathaphop,Mahakkanukrauh Ajanee,Suwannaroj Siraphop,Thinkhamrop Bandit
Abstract
AbstractClinical predictors of mortality in systemic sclerosis (SSc) are diversely reported due to different healthcare conditions and populations. A simple predictive model for early mortality among patients with SSc is needed as a precise referral tool for general practitioners. We aimed to develop and validate a simple predictive model for predicting mortality among patients with SSc. Prognostic research with a historical cohort study design was conducted between January 1, 2013, and December 31, 2020, in adult SSc patients attending the Scleroderma Clinic at a university hospital in Thailand. The data were extracted from the Scleroderma Registry Database. Early mortality was defined as dying within 5 years after the onset of SSc. Deep learning algorithms with Adam optimizer and different machine learning algorithms (including Logistic Regression, Decision tree, AdaBoost, Random Forest, Gradient Boosting, XGBoost, and Autoencoder neural network) were used to classify SSc mortality. In addition, the model’s performance was evaluated using the area under the receiver operating characteristic curve (auROC) and its 95% confidence interval (CI) and values in the confusion matrix. The predictive model development included 528 SSc patients, 343 (65.0%) were females and 374 (70.8%) had dcSSc. Ninety-five died within 5 years after disease onset. The final 2 models with the highest predictive performance comprise the modified Rodnan skin score (mRSS) and the WHO-FC ≥ II for Model 1 and mRSS and WHO-FC ≥ III for Model 2. Model 1 provided the highest predictive performance, followed by Model 2. After internal validation, the accuracy and auROC were good. The specificity was high in Models 1 and 2 (84.8%, 89.8%, and 98.8% in model 1 vs. 84.8%, 85.6%, and 98.8% in model 2). This simplified machine learning model for predicting early mortality among patients with SSc could guide early referrals to specialists and help rheumatologists with close monitoring and management planning. External validation across multi-SSc clinics should be considered for further study.
Funder
Thailand's National Science, Research, and Innovation Fund
Publisher
Springer Science and Business Media LLC
Reference28 articles.
1. Silver, R. M. Clinical aspects of systemic sclerosis (scleroderma). Ann. Rheum. Dis. 50(Suppl 4), 854–861 (1991).
2. Foocharoen, C., Mahakkanukrauh, A., Suwannaroj, S. & Nanagara, R. Spontaneous skin regression and predictors of skin regression in Thai scleroderma patients. Clin. Rheumatol. 30, 1235–1240 (2011).
3. Ferri, C. et al. Systemic sclerosis: Demographic, clinical, and serologic features and survival in 1,012 Italian patients. Medicine (Baltimore) 81, 139–153 (2002).
4. Delisle, V. C., Hudson, M., Baron, M., Thombs, B. D., The Canadian Scleroderma Research Group, A. Sex and time to diagnosis in systemic sclerosis: An updated analysis of 1,129 patients from the Canadian scleroderma research group registry. Clin. Exp. Rheumatol. 32, S1014 (2014).
5. Rubio-Rivas, M., Royo, C., Simeón, C. P., Corbella, X. & Fonollosa, V. Mortality and survival in systemic sclerosis: Systematic review and meta-analysis. Semin. Arthritis Rheum. 44, 208–219 (2014).
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献