Evaluation of IMERG and ERA5 precipitation products over the Mongolian Plateau

Author:

Xin Ying,Yang Yaping,Chen Xiaona,Yue Xiafang,Liu Yangxiaoyue,Yin Cong

Abstract

AbstractPrecipitation is an important component of the hydrological cycle and has significant impact on ecological environment and social development, especially in arid areas where water resources are scarce. As a typical arid and semi-arid region, the Mongolian Plateau is ecologically fragile and highly sensitive to climate change. Reliable global precipitation data is urgently needed for the sustainable development over this gauge-deficient region. With high-quality estimates, fine spatiotemporal resolutions, and wide coverage, the state-of-the-art Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) and European Center for Medium-range Weather Forecasts Reanalysis 5 (ERA5) have great potential for regional climatic, hydrological, and ecological applications. However, how they perform has not been well investigated on the Mongolian Plateau. Therefore, this study evaluated the performance of three IMERG V06 datasets (ER, LR and FR), two ERA5 products (ERA5-HRES and ERA5-Land), and their predecessors (TMPA-3B42 and ERA-Interim) over the region across 2001–2018. The results showed that all products broadly characterized seasonal precipitation cycles and spatial patterns, but only the three reanalysis products, IMERG FR and TMPA-3B42 could capture interannual and decadal variability. When describing daily precipitation, dataset performances ranked ERA5-Land > ERA5-HRES > ERA-Interim > IMERG FR > IMERG LR > IMERG ER > TMPA-3B42. All products showed deficiencies in overestimating weak precipitation and underestimating high-intensity precipitation. Besides, products performed best in agricultural lands and forests along the northern and south-eastern edges, followed by urban areas and grasslands closer to the center, and worst in the sparse vegetation and bare areas of the south-west. Due to a negative effect of topographic complexity, IMERG showed poor detection capabilities in forests. Accordingly, this research currently supports the applicability of reanalysis ERA5 data over the arid, topographically complex Mongolian Plateau, which can inform regional applications with different requirements.

Funder

The comprehensive survey of biodiversity over the Mongolian Plateau

National Earth System Science Data Sharing Infrastructure

Branch Center Project of Geography, Resources and Ecology of Knowledge Center for Chinese Engineering Sciences and Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3